# Best Simultaneous Approximation in L<sup>p</sup>(I, E)

## Fathi B. Saidi and Deeb Hussein<sup>1</sup>

Department of Mathematics, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates E-mail: fsaidi@sharjah.ac.ae

#### and

## Roshdi Khalil

Department of Mathematics, University of Jordan, Amman, Jordan E-mail: roshdi@ju.edu.jo

Communicated by William A. Light

Received November 26, 2000; accepted in revised form December 31, 2001

#### DEDICATED TO THE MEMORY OF PROFESSOR DEEB HUSSEIN

Let G be a reflexive subspace of the Banach space E and let  $L^{p}(I, E)$  denote the space of all p-Bochner integrable functions on the interval I = [0, 1] with values in  $E, 1 \le p \prec \infty$ . Given any norm  $N(\cdot, \cdot)$  on  $R^{2}$ , N nondecreasing in each coordinate on the set  $R^{2}_{+}$ , we prove that  $L^{p}(I, G)$  is N-simultaneously proximinal in  $L^{p}(I, E)$ . Other results are also obtained. © 2002 Elsevier Science (USA)

Key Words: simultaneous; approximation.

## 1. INTRODUCTION

Throughout this paper, E is a Banach space, G is a closed subspace of E, p is a real number in  $[1, \infty)$ , and n is any integer,  $n \ge 1$ . The norm of  $v \in E$ is denoted by ||v|| and the norm of  $u := (u_k)_{k=1}^n \in E^n$  is defined by

$$||u||_{p,n} := \left[\sum_{k=1}^{n} ||u_k||^p\right]^{1/p}.$$

<sup>1</sup> Professor Deeb Hussein passed away on July 28, 2001.



Also, we let  $L^{p}(I, E)$  be the Banach space of *p*-Bochner integrable functions defined on *I* with values in *E*, where I = [0, 1] is the unit interval in *R*. Here *R* is the set of real numbers. The norm of  $f \in L^{p}(I, E)$  is given by

$$||f||_p := \left[ \int_I ||f(s)||^p d\mu \right]^{1/p},$$

where  $\mu$  is the Lebesgue measure on *I*.

Finally, we let N be any norm on  $R^2$  satisfying, for every  $(x_1, x_2)$ ,  $(y_1, y_2) \in R^2$ ,

(1.1) 
$$N(x_1, x_2) \leq N(y_1, y_2), \quad \text{if } |x_i| \leq |y_i|, \quad i = 1, 2.$$

Note that Eq. (1.1) is equivalent to N is nondecreasing in each coordinate on the set  $R_+^2 := \{(x_1, x_2) : x_1, x_2 \ge 0\}$ . Also, note that Eq. (1.1) is satisfied by all the  $l^p$ -norms on  $R^2$ ,  $1 \le p \le \infty$ .

The norm of  $(u^1, u^2) \in (E^n)^2$  is defined by

$$\begin{aligned} |(u^{1}, u^{2})|_{p,n} &:= N\left(\left[\sum_{k=1}^{n} \|u_{k}^{1}\|^{p}\right]^{1/p}, \left[\sum_{k=1}^{n} \|u_{k}^{2}\|^{p}\right]^{1/p}\right) \\ &:= N(\|u^{1}\|_{p,n}, \|u^{2}\|_{p,n}), \end{aligned}$$

where  $u^1 = (u_k^1)_{k=1}^n$ ,  $u^2 = (u_k^2)_{k=1}^n$ . Note that, by Eq. (1.1),  $|\cdot|_{p,n}$  is a norm on  $(E^n)^2$  making it a Banach space. The diagonal of  $G^n$  is given by

$$D^{n} := \{ ((g_{k})_{k=1}^{n}, (g_{k})_{k=1}^{n}) : (g_{k})_{k=1}^{n} \in G^{n} \}.$$

DEFINITION 1. We say that  $g \in G$  is a best *N*-simultaneous approximation from *G* of the pair of elements  $u^1$ ,  $u^2 \in E$  if, for every  $h \in G$ ,

$$N(||u^{1}-g||, ||u^{2}-g||) \leq N(||u^{1}-h||, ||u^{2}-h||),$$

or, in other words, if, for every  $h \in G$ ,

$$|(u^1-g, u^2-g)|_{1,1} \leq |(u^1-h, u^2-h)|_{1,1}$$

Note that  $g \in G$  is a best *N*-simultaneous approximation from *G* of  $u^1$ ,  $u^2 \in E$  if and only if (g, g) is a best approximation from  $D^1$  of the pair  $(u^1, u^2) \in E^2$ , where the norm on  $E^2$  is  $|\cdot|_{1,1}$ . If every pair of elements  $u^1$ ,  $u^2 \in E$  admits a best *N*-simultaneous approximation from *G* (equivalently,  $D^1$  is proximinal in  $E^2$ ), then *G* is said to be *N*-simultaneously proximinal in *E*.

The problem of best simultaneous approximations has been studied by many authors, e.g., [1, 7, 13-15]. Most of these works have dealt with the characterizations of best simultaneous approximations in spaces of continuous functions with values in a Banach space E. Some existence and uniqueness results were also obtained. Results on best simultaneous approximation in general Banach spaces may be found in [9] and [11]. Little or no work has been done in the spaces  $L^{p}(I, E)$ . It is the aim of this paper to establish some existence results in this area. Among other things, we prove that, if G is a reflexive subspace of the Banach space E and  $1 \le p < \infty$ , then  $L^p(I, G)$  is N-simultaneously proximinal in  $L^p(I, E)$ .

Before we continue we note, as pointed out in Definition 1, that problems of best simultaneous approximation can also be viewed as special cases of vector-valued approximation. Some recent work in this area is due to Pinkus [10].

## 2. BEST SIMULTANEOUS APPROXIMATION IN $L^{P}(I, E)$

Recall that the norm of  $u \in E^n$ , hence also of  $u \in G^n$  and of  $u \in D^n$ , is  $||u||_{p,n}$  where p is a fixed real number in  $[1, \infty)$ . We start this section with the following observations:

Remark 1. Since all norms on a finite dimensional vector space are equivalent and since  $N\left(\left[\sum_{k=1}^{n} (\cdot)^{p}\right]^{1/p}, \left[\sum_{k=1}^{n} (\cdot)^{p}\right]^{1/p}\right)$  is a norm on  $R^n \times R^n$ , we have (where the norm on  $(E^n)^2$  is  $|\cdot|_{n,n}$ ):

(1) A sequence  $((u_k^m)_{k=1}^n, (v_k^m)_{k=1}^n)_{m=1}^\infty$  in  $(E^n)^2$  is bounded if and only if the sets  $\{u_k^m : 1 \le k \le n, 1 \le m < \infty\}$  and  $\{v_k^m : 1 \le k \le n, 1 \le m < \infty\}$ are both bounded in E.

(2) A sequence  $((u_k^m)_{k=1}^n, (v_k^m)_{k=1}^n)_{m=1}^\infty$  in  $(E^n)^2$  is convergent (weakly convergent) if and only if all the sequences  $(u_k^m)_{m=1}^{\infty}$ ,  $(u_k^m)_{m=1}^{\infty}$ ,  $1 \le k \le n$ , are convergent (weakly convergent) in E.

If G is reflexive then  $G^n$  and  $D^n$  are reflexive. (3)

Note that  $(g_k)_{k=1}^n \in G^n$  is a best N-simultaneous approximation from  $G^n$  of the pair of elements  $(u_k^1)_{k=1}^n, (u_k^2)_{k=1}^n \in E^n$  if and only if, for every  $(h_k)_{k=1}^n \in G^n$ ,

$$|((u_k^1 - g_k)_{k=1}^n, (u_k^2 - g_k)_{k=1}^n)|_{p,n} \leq |((u_k^1 - h_k)_{k=1}^n, (u_k^2 - h_k)_{k=1}^n)|_{p,n}.$$

It follows immediately that

*Remark* 2. Let  $(g_k)_{k=1}^n \in G^n$  be a best *N*-simultaneous approximation from  $G^n$  of the pair of elements  $(u_k^1)_{k=1}^n$ ,  $(u_k^2)_{k=1}^n \in E^n$ . Then, for each  $k \in \{1, ..., n\}, g_k = 0$  whenever  $u_k^1 = u_k^2 = 0$ .

From Remark 1 we obtain that, if G is reflexive, then  $D^n$  is reflexive and, consequently, proximinal in  $(E^n)^2$ . Hence, we have:

**LEMMA** 1. If G is reflexive then, for every  $n \ge 1$ ,  $G^n$  is N-simultaneously proximinal in  $E^n$ .

Now, note that  $g \in L^p(I, G)$  is a best *N*-simultaneous approximation from  $L^p(I, G)$  of  $f_1, f_2 \in L^p(I, E)$  if and only if, for all  $h \in L^p(I, G)$ ,

$$N(\|f_1 - g\|_p, \|f_2 - g\|_p) \leq N(\|f_1 - h\|_p, \|f_2 - h\|_p).$$

The main result of this section is:

**THEOREM 1.** If, for every  $n \ge 1$ ,  $G^n$  is N-simultaneously proximinal in  $E^n$ , then every pair of simple functions  $f_1$ ,  $f_2 \in L^p(I, E)$  admits a best N-simultaneous approximation g from  $L^p(I, G)$ .

*Proof.* Let  $f_1$ ,  $f_2$  be two simple functions in  $L^p(I, E)$ . Then  $f_j(s) := \sum_{k=1}^n u_k^j \chi_{I_k}(s)$ , j = 1, 2, where the  $I_k$ 's are disjoint measurable subsets of I satisfying  $\bigcup_{k=1}^n I_k = I$  and  $\chi_{I_k}$  is the characteristic function of  $I_k$ . Since  $f_1$  and  $f_2$  represent classes of functions, we may assume that  $\mu(I_k) > 0$ ,  $1 \le k \le n$ . By assumption, there exists an N-simultaneous best approximation  $(w_k)_{k=1}^n$  from  $G^n$  of the pair of elements  $(\mu^{1/p}(I_k) u_k^1)_{k=1}^n$ ,  $(\mu^{1/p}(I_k) u_k^2)_{k=1}^n \in E^n$ . This implies, if  $g_k := \frac{1}{\mu^{1/p}(I_k)} w_k$ , that  $g := \sum_{k=1}^n g_k \chi_{I_k} \in L^p(I, G)$  and, since  $w_k = \mu^{1/p}(I_k) g_k$ , that

(2.1) 
$$|((\mu^{1/p}(I_k)(u_k^1 - g_k))_{k=1}^n, (\mu^{1/p}(I_k)(u_k^2 - g_k))_{k=1}^n)|_{p,n} \\ \leq |((\mu^{1/p}(I_k)(u_k^1 - h_k))_{k=1}^n, (\mu^{1/p}(I_k)(u_k^2 - h_k))_{k=1}^n)|_{p,n}$$

for all  $h := \sum_{k=1}^{n} h_k \chi_{I_k} \in L^p(I, G)$ . In other words, we have

(2.2) 
$$N(\|f_1 - g\|_p, \|f_2 - g\|_p) \leq N(\|f_1 - h\|_p, \|f_2 - h\|_p),$$

for all  $h := \sum_{k=1}^{n} h_k \chi_{I_k} \in L^p(I, G)$ . We need to show that Eq. (2.2) holds for all simple functions (hence, by density, for all functions)  $h \in L^p(I, G)$ . So let h be any simple function in  $L^p(I, G)$ . Then  $h := \sum_{i=1}^{m} h_i \chi_{J_i}(s)$ , where the  $J_i$ 's are disjoint,  $\bigcup_{i=1}^{m} J_i = I$ . Then

$$f_j = \sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} u_{ki}^j \chi_{I_k \cap J_i}, \qquad j = 1, 2, \qquad \text{and} \qquad h = \sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} h_{ki} \chi_{I_k \cap J_i},$$

where, for each *j* and each *k*, j = 1, 2 and  $1 \le k \le n$ ,

(2.3) 
$$u_{ki}^{j} = u_{k}^{j}, \qquad 1 \leq i \leq m,$$

and, for each *i*,  $1 \leq i \leq m$ ,

$$h_{ki} = h_i, \qquad 1 \leq k \leq n$$

Again, we obtain from the assumption that there exists a best *N*-simultaneous approximation  $(w_{ki}^*)_{1 \le k \le n}^{1 \le i \le m}$  from  $G^{nm}$  of the pair of elements  $(\mu^{1/p}(I_k \cap J_i) u_{ki}^1)_{1 \le k \le n}^{1 \le i \le m}$ ,  $(\mu^{1/p}(I_k \cap J_i) u_{ki}^2)_{1 \le k \le n}^{1 \le i \le m} \in E^{nm}$ . Note that, by Remark 2,  $w_{ki}^* = 0$  whenever  $\mu^{1/p}(I_k \cap J_i) u_{ki}^1 = \mu^{1/p}(I_k \cap J_i) u_{ki}^2 = 0$ . Let  $w_{ki}^* := \mu^{1/p}(I_k \cap J_i) g_{ki}^*$ ,  $g_{ki}^* := 0$  if  $w_{ki}^* = 0$ . Then,

$$g^* := \sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} g^*_{ki} \chi_{I_k \cap J_i} \in L^p(I,G)$$

and

$$(2.4) \\ |((\mu^{1/p}(I_k \cap J_i)(u_{ki}^1 - g_{ki}^*))_{k,i=1}^{n,m}, (\mu^{1/p}(I_k \cap J_i)(u_{ki}^2 - g_{ki}^*))_{k,i=1}^{n,m})|_{p,nm} \\ \leq |((\mu^{1/p}(I_k \cap J_i)(u_{ki}^1 - h_{ki}))_{k,i=1}^{n,m}, (\mu^{1/p}(I_k \cap J_i)(u_{ki}^2 - h_{ki}))_{k,i=1}^{n,m})|_{p,nm}.$$

Note that, if  $\lambda_{ki} := \mu(I_k \cap J_i)/\mu(I_k)$ , then  $\sum_{i=1}^m \lambda_{ki} = 1$  and

$$\sum_{1 \leq k \leq n}^{1 \leq i \leq m} \mu(I_k \cap J_i) \|u_{ki}^j - g_{ki}^*\|^p = \sum_{k=1}^n \mu(I_k) \sum_{i=1}^m \lambda_{ki} \|u_{ki}^j - g_{ki}^*\|^p, \qquad j = 1, 2.$$

Therefore, since  $||v||^p$  is a convex function of  $v \in E$  for  $p \ge 1$ ,

$$\sum_{i=1}^{m} \lambda_{ki} \| u_{ki}^{j} - g_{ki}^{*} \|^{p} \ge \left\| \sum_{i=1}^{m} \lambda_{ki} u_{ki}^{j} - \sum_{i=1}^{m} \lambda_{ki} g_{ki}^{*} \right\|^{p} = \| u_{k}^{j} - \beta_{k} \|^{p}, \qquad j = 1, 2,$$

where  $\beta_k := \sum_{i=1}^m \lambda_{ki} g_{ki}^*$  and where the equality follows from Eq. (2.3) and the fact that  $\sum_{i=1}^m \lambda_{ki} = 1$ . Therefore we get

(2.5) 
$$\sum_{1 \leq k \leq n}^{1 \leq i \leq m} \mu(I_k \cap J_i) \|u_{ki}^j - g_{ki}^*\|^p \ge \sum_{k=1}^n \mu(I_k) \|u_k^j - \beta_k\|^p, \quad j = 1, 2.$$

Hence, using Eqs. (2.1) then (1.1) and (2.5) then (2.4), we get

$$\begin{split} |((\mu^{1/p}(I_k)(u_k^1-g_k))_{k=1}^n, (\mu^{1/p}(I_k)(u_k^2-g_k))_{k=1}^n)|_{p,n} \\ &\leqslant |((\mu^{1/p}(I_k)(u_k^1-\beta_k))_{k=1}^n, (\mu^{1/p}(I_k)(u_k^2-\beta_k))_{k=1}^n)|_{p,n} \\ &\leqslant |((\mu^{1/p}(I_k\cap J_i)(u_{ki}^1-g_{ki}^*))_{k,i=1}^{n,m}, (\mu^{1/p}(I_k\cap J_i)(u_{ki}^2-g_{ki}^*))_{k,i=1}^{n,m})|_{p,nm} \\ &\leqslant |((\mu^{1/p}(I_k\cap J_i)(u_{ki}^1-h_{ki}))_{k,i=1}^{n,m}, (\mu^{1/p}(I_k\cap J_i)(u_{ki}^2-h_{ki}))_{k,i=1}^{n,m})|_{p,nm}. \end{split}$$

In other words,

$$N(\|f_1 - g\|_p, \|f_2 - g\|_p) \leq N(\|f_1 - h\|_p, \|f_2 - h\|_p)$$

for all simple functions  $h \in L^p(I, G)$  and, consequently, for all functions  $h \in L^p(I, G)$ , since the set of simple functions is dense in  $L^p(I, G)$ . The proof is complete.

COROLLARY 1. If G is reflexive, then every pair of simple functions  $f_1, f_2 \in L^p(I, E)$  admits a best N-simultaneous approximation g from  $L^p(I, G)$ .

From the proof of the theorem we obtain:

*Remark* 3. If, for every  $n \ge 1$ ,  $G^n$  is *N*-simultaneously proximinal in  $E^n$ , then every pair of simple functions in  $L^p(I, E)$  admits a simple function in  $L^p(I, G)$  as an *N*-simultaneous approximation.

In the special case where N is the p-norm on  $R^2$ , we obtain a stronger result than that of Theorem 1:

THEOREM 2. If  $N(x_1, x_2) := (|x_1|^p + |x_2|^p)^{1/p}$  and if  $L^p(I, D^1)$  is proximinal in  $L^p(I, E^2)$ , then  $L^p(I, G)$  is N-simultaneously proximinal in  $L^p(I, E)$ .

*Proof.* First we note that

$$N(\|f_1\|_p, \|f_2\|_p) = \left(\int_I \|f_1(s)\|^p \, d\mu + \int_I \|f_2(s)\|^p \, d\mu\right)^{1/p}$$
$$= \left(\int_I (\|f_1(s)\|^p + \|f_2(s)\|^p) \, d\mu\right)^{1/p}$$
$$= \left(\int_I [N(\|f_1(s)\|, \|f_2(s)\|)]^p \, d\mu\right)^{1/p}.$$

This implies that  $[L^p(I, E)]^2$  is isometric to  $L^p(I, E^2)$  and that  $D^1_{L^p(I, G)} := \{(g, g) : g \in L^p(I, G)\}$  is isometric to  $L^p(I, D^1)$ . Hence we obtain, from the assumption, that  $D^1_{L^p(I, G)}$  is proximinal in  $[L^p(I, E)]^2$ . The theorem now follows from the fact that  $L^p(I, G)$  is N-simultaneously proximinal in  $L^p(I, E)$  if and only if  $D^1_{L^p(I, G)}$  is proximinal in  $[L^p(I, E)]^2$ . End of the proof.

On the question of proximinality of  $L^{p}(I, H)$  in  $L^{p}(I, X)$ , where X is a Banach space and H is a closed subspace satisfying some conditions (in our case  $X = E^{2}$  and  $H = D^{1}$ ), many results have been established by various authors, e.g., [2, 4–6, 8, 12] to mention a few. For some of the strongest

results on this question, we refer the reader to [12] and [8]. Therefore, one can obtain several corollaries from Theorem 2. In particular, if G is reflexive then, by Remark 1,  $D^1$  is reflexive and, consequently,  $L^p(I, D^1)$  is proximinal in  $L^p(I, E^2)$ , [12].

Note that if G is reflexive and  $1 , then it follows, by Remark 1 and by [3, IV.1. Corollary 2], that <math>L^{p}(I, G)$  and  $L^{p}(I, D^{1})$  are reflexive. Therefore, for p > 1, we obtain directly, by Lemma 1, the following more general result than those of Corollary 1 and Theorem 2:

THEOREM 3. If G is reflexive and  $1 , then <math>L^p(I, G)$  is N-simultaneously proximinal in  $L^p(I, E)$ .

The case where p = 1 and N is arbitrary is more difficult and will be studied in Section 3.

## 3. BEST SIMULTANEOUS APPROXIMATION IN $L^{1}(I, E)$

First, we establish some preliminary results needed for the proof of our main theorem:

LEMMA 2. If  $|x_i| < |y_i|$  in R, j = 1, 2, then  $N(x_1, x_2) < N(y_1, y_2)$ .

*Proof.* From the assumption we get that there exist  $\alpha_1, \alpha_2 \in [0, 1)$  such that  $|x_j| = \alpha_j |y_j|, j = 1, 2$ . Let  $\lambda := \max \{\alpha_1, \alpha_2\}$ . Then  $\lambda < 1$  and  $|x_j| \leq \lambda |y_j|, j = 1, 2$ .

Therefore by Eq. (1.1) we get

$$N(x_1, x_2) \leq N(\lambda y_1, \lambda y_2) = \lambda N(y_1, y_2).$$

But  $\lambda < 1$  and from the assumption  $N(y_1, y_2) > 0$ . Therefore  $N(x_1, x_2) < N(y_1, y_2)$ .

LEMMA 3. If  $g \in L^p(I, G)$  is a best N-simultaneous approximation from  $L^p(I, G)$  of the pair of elements  $f_1, f_2 \in L^p(I, E)$  then, for every measurable subset A of I and every  $h \in L^p(I, G)$ ,

$$\int_{A} \|f_{j_{o}}(s) - g(s)\|^{p} d\mu \leq \int_{A} \|f_{j_{o}}(s) - h(s)\|^{p} d\mu,$$

for some  $j_o \in \{1, 2\}$ .

*Proof.* If  $\mu(A) = 0$  then there is nothing to prove. Suppose that, for some A satisfying  $\mu(A) > 0$  and for some  $h_o \in L^p(I, G)$ , the inequality does not hold for j = 1 and for j = 2. Now, define  $g_o \in L^p(I, G)$  by

$$g_o(s) := \begin{cases} g(s) & \text{if } s \in I - A \\ h_o(s) & \text{if } s \in A. \end{cases}$$

Then we have, for j = 1, 2,

$$\begin{split} \left[ \int_{I} \|f_{j}(s) - g_{o}(s)\|^{p} d\mu \right]^{1/p} \\ &= \left[ \int_{A} \|f_{j}(s) - h_{o}(s)\|^{p} d\mu + \int_{I-A} \|f_{j}(s) - g(s)\|^{p} d\mu \right]^{1/p} \\ &< \left[ \int_{A} \|f_{j}(s) - g(s)\|^{p} d\mu + \int_{I-A} \|f_{j}(s) - g(s)\|^{p} d\mu \right]^{1/p} \\ &= \left[ \int_{I} \|f_{j}(s) - g(s)\|^{p} d\mu \right]^{1/p}. \end{split}$$

This together with Lemma 2 imply that

$$N(\|f_1 - g_o\|_p, \|f_2 - g_o\|_p) < N(\|f_1 - g\|_p, \|f_2 - g\|_p)$$

which contradicts the fact that g is a best N-simultaneous approximation from  $L^p(I, G)$  of the pair of elements  $f_1, f_2$ .

As a corollary we get:

COROLLARY 2. If g is a best N-simultaneous approximation from  $L^{p}(I, G)$  of the pair of elements  $f_{1}, f_{2} \in L^{p}(I, E)$  then, for every measurable subset A of I,

$$\int_{A} \|g(s)\|^{p} d\mu \leq 2 \max\left\{\int_{A} \|f_{1}(s)\|^{p} d\mu, \int_{A} \|f_{2}(s)\|^{p} d\mu\right\}.$$

*Proof.* Since, for j = 1, 2,

$$\left[\int_{A} \|g(s)\|^{p} d\mu\right]^{1/p} \leq \left[\int_{A} \|f_{j}(s) - g(s)\|^{p} d\mu\right]^{1/p} + \left[\int_{A} \|f_{j}(s)\|^{p} d\mu\right]^{1/p},$$

we obtain, by using Lemma 3 with h := 0, that for some  $j_o \in \{1, 2\}$ 

$$\left[ \int_{A} \|g(s)\|^{p} d\mu \right]^{1/p} \leq 2 \left[ \int_{A} \|f_{j_{o}}(s)\|^{p} d\mu \right]^{1/p}$$
$$\leq 2 \max \left\{ \left[ \int_{A} \|f_{1}(s)\|^{p} d\mu \right]^{1/p}, \left[ \int_{A} \|f_{2}(s)\|^{p} d\mu \right]^{1/p} \right\},$$

which completes the proof.

We note that, as a corollary of Lemma 3, we get that, if  $g \in G^n$  is a best *N*-simultaneous approximation from  $G^n$  of the pair of elements  $u^1$ ,  $u^2 \in E^n$  then, for each  $h \in G^n$  and each k,  $1 \le k \le n$ ,

either 
$$||u_k^1 - g_k|| \le ||u_k^1 - h_k||$$
 or  $||u_k^2 - g_k|| \le ||u_k^2 - h_k||$ .

Hence, for every  $J \subset \{1, 2, ..., n\}$ ,

$$\sum_{k \in J} \|g_k\|^p \leq 2 \max \left\{ \sum_{k \in J} \|u_k^1\|^p, \sum_{k \in J} \|u_k^2\|^p \right\}.$$

We are now ready to establish the analogue of Theorem 3 for  $L^{1}(I, E)$ :

**THEOREM 4.** If G is reflexive then  $L^1(I, G)$  is N-simultaneously proximinal in  $L^1(I, E)$ .

*Proof.* Let  $f_1, f_2 \in L^1(I, E)$  and let  $\{f_{jn}\}_{n=1}^{\infty}, j = 1, 2$ , be two sequences of simple functions in  $L^1(I, E)$  satisfying

$$\lim_{n \to \infty} \|f_j - f_{jn}\|_1 = 0, \qquad j = 1, 2.$$

By Corollary 1 we obtain, for each  $n \ge 1$ , that the pair of simple functions  $f_{1n}$ ,  $f_{2n}$  admits a best N-simultaneous approximation  $g_n$  from  $L^p(I, G)$ . Hence we have, for each  $n \ge 1$ ,

(3.1) 
$$N(\|f_{1n} - g_n\|_1, \|f_{2n} - g_n\|_1) \leq N(\|f_{1n} - h\|_1, \|f_{2n} - h\|_1),$$

for every  $h \in L^1(I, G)$ . By Corollary 3, we obtain that

$$\int_{A} \|g_{n}(s)\| d\mu \leq 2 \max \left\{ \int_{A} \|f_{1n}(s)\| d\mu, \int_{A} \|f_{2n}(s)\| d\mu \right\}$$

for every  $n \ge 1$ . It follows, since both  $\{f_{1n}\}_{n=1}^{\infty}$  and  $\{f_{2n}\}_{n=1}^{\infty}$  are uniformly integrable, i.e.,

$$\sup\left\{\sup_{n}\left\{\int_{A}\|f_{jn}(s)\|\,d\mu\right\}:A\subset I,\,\mu(A)\leqslant\varepsilon\right\}\to0\qquad\text{as}\quad\varepsilon\to0,$$

and since  $f_{jn} \to f_j$  in  $L^1(I, E)$ , j = 1, 2, that the sequence  $\{g_n\}_{n=1}^{\infty}$  in  $L^1(I, G)$ is bounded and uniformly integrable. Hence, since G is reflexive, we obtain, by Dunford's theorem [3], that  $\{g_n\}_{n=1}^{\infty}$  is relatively weakly compact in  $L^1(I, E)$ . Therefore, there exists a subsequence, say  $\{g_n\}_{n=1}^{\infty}$ , which converges weakly to some element  $g \in L^1(I, E)$ . It follows, since  $L^1(I, G)$  is closed and convex hence weakly closed, that  $g \in L^1(I, G)$ . It follows from Eq. (1.1) that  $N(\|\cdot\|_1, \|\cdot\|_1)$  is convex and continuous, and hence weakly lower semicontinuous, on  $L^1(I, E)$ . This together with Eq. (3.1) imply that, for every  $h \in L^1(I, G)$ ,

$$N(\|f_1 - g\|_1, \|f_2 - g\|_1) \leq \liminf_n N(\|f_{1n} - g_n\|_1, \|f_{2n} - g_n\|_1)$$
$$\leq \liminf_n N(\|f_{1n} - h\|_1, \|f_{2n} - h\|_1)$$
$$= N(\|f_1 - h\|_1, \|f_2 - h\|_1).$$

Therefore g is a best N-simultaneous approximation from  $L^{p}(I, G)$  of the pair  $f_{1}, f_{2} \in L^{1}(I, E)$ .

Finally, we note the following:

*Remark* 4. It follows immediately that all the results and proofs in this paper are valid in the case where N is a norm on  $R^M$ ,  $M \ge 2$ , satisfying

$$N(x) \leq N(y), \quad if \quad |x_i| \leq |y_i|, \quad 1 \leq i \leq M.$$

In this case,  $g \in G$  is said to be a best *N*-simultaneous approximation from *G* of the elements  $u^1, u^2, ..., u^M \in E$  if, for every  $h \in G$ ,

$$N(\|u^{1}-g\|, \|u^{2}-g\|, ..., \|u^{M}-g\|) \leq N(\|u^{1}-h\|, \|u^{2}-h\|, ..., \|u^{M}-h\|).$$

#### REFERENCES

- L. Chong and G. A. Watson, On best simultaneous approximation, J. Approx. Theory 91 (1997), 332–348.
- W. Deeb and R. Khalil, Best approximation in L(X, Y), Math. Proc. Cambridge Philos. Soc. 104 (1988), 527–531.
- J. Diestel and J. R. Uhl, "Vector Measures," Math. Surveys Monographs, Vol. 15, Amer. Math. Soc., Providence, RI, 1977.

- R. Khalil and W. Deeb, Best approximation in L<sup>p</sup>(I, X), ii, J. Approx. Theory 59 (1989), 296–299.
- 5. R. Khalil and F. Saidi, Best approximation in  $L^1(I, X)$ , Proc. Amer. Math. Soc. 123 (1995), 183–190.
- 6. W. Light, Proximinality in L<sub>p</sub>(S, Y), Rocky Mountain J. Math. (1989).
- J. Mach, Best simultaneous approximation of bounded functions with values in certain Banach spaces, *Math. Ann.* 240 (1979), 157–164.
- 8. J. Mendoza, Proximinality in L<sup>p</sup>(μ, X), J. Approx. Theory 93 (1998), 313–330.
- P. D. Milman, On best simultaneous approximation in normed linear spaces, J. Approx. Theory 20 (1977), 223–238.
- A. Pinkus, Uniqueness in Vector-valued approximation, J. Approx. Theory 73 (1993), 17-92.
- B. N. Sahney and S. P. Singh, On best simultaneous approximation in Banach spaces, J. Approx. Theory 35 (1982), 222–224.
- F. Saidi, On the smoothness of the metric projection and its application to proximinality in L<sup>p</sup>(S, X), J. Approx. Theory 83 (1995), 205–319.
- 13. S. Tanimoto, On best simultaneous approximation, Math. Japonica 48 (1998), 275-279.
- S. Tanimoto, A characterization of best simultaneous approximations, J. Approx. Theory 59 (1989), 359–361.
- G. A. Watson, A characterization of best simultaneous approximations, J. Approx. Theory 75 (1993), 175–182.