Best Simultaneous Approximation in $L^{p}(I, E)$

Fathi B. Saidi and Deeb Hussein ${ }^{1}$
Department of Mathematics, University of Sharjah, P. O. Box 27272, Sharjah, United Arab Emirates
E-mail: fsaidi@sharjah.ac.ae
and
Roshdi Khalil
Department of Mathematics, University of Jordan, Amman, Jordan
E-mail: roshdi@ju.edu.jo
Communicated by William A. Light

Received November 26, 2000; accepted in revised form December 31, 2001

DEDICATED TO THE MEMORY OF PROFESSOR DEEB HUSSEIN

Let G be a reflexive subspace of the Banach space E and let $L^{p}(I, E)$ denote the space of all p-Bochner integrable functions on the interval $I=[0,1]$ with values in $E, 1 \leqslant p \prec \infty$. Given any norm $N(\cdot, \cdot)$ on R^{2}, N nondecreasing in each coordinate on the set R_{+}^{2}, we prove that $L^{p}(I, G)$ is N-simultaneously proximinal in $L^{p}(I, E)$. Other results are also obtained. © 2002 Elsevier Science (USA)

Key Words: simultaneous; approximation.

1. INTRODUCTION

Throughout this paper, E is a Banach space, G is a closed subspace of E, p is a real number in $[1, \infty)$, and n is any integer, $n \geqslant 1$. The norm of $v \in E$ is denoted by $\|v\|$ and the norm of $u:=\left(u_{k}\right)_{k=1}^{n} \in E^{n}$ is defined by

$$
\|u\|_{p, n}:=\left[\sum_{k=1}^{n}\left\|u_{k}\right\|^{p}\right]^{1 / p} .
$$

[^0]Also, we let $L^{p}(I, E)$ be the Banach space of p-Bochner integrable functions defined on I with values in E, where $I=[0,1]$ is the unit interval in R. Here R is the set of real numbers. The norm of $f \in L^{p}(I, E)$ is given by

$$
\|f\|_{p}:=\left[\int_{I}\|f(s)\|^{p} d \mu\right]^{1 / p}
$$

where μ is the Lebesgue measure on I.
Finally, we let N be any norm on R^{2} satisfying, for every $\left(x_{1}, x_{2}\right)$, $\left(y_{1}, y_{2}\right) \in R^{2}$,

$$
\begin{equation*}
N\left(x_{1}, x_{2}\right) \leqslant N\left(y_{1}, y_{2}\right), \quad \text { if } \quad\left|x_{i}\right| \leqslant\left|y_{i}\right|, \quad i=1,2 . \tag{1.1}
\end{equation*}
$$

Note that Eq. (1.1) is equivalent to N is nondecreasing in each coordinate on the set $R_{+}^{2}:=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \geqslant 0\right\}$. Also, note that Eq. (1.1) is satisfied by all the l^{p}-norms on $R^{2}, 1 \leqslant p \leqslant \infty$.

The norm of $\left(u^{1}, u^{2}\right) \in\left(E^{n}\right)^{2}$ is defined by

$$
\begin{aligned}
\left|\left(u^{1}, u^{2}\right)\right|_{p, n} & :=N\left(\left[\sum_{k=1}^{n}\left\|u_{k}^{1}\right\|^{p}\right]^{1 / p},\left[\sum_{k=1}^{n}\left\|u_{k}^{2}\right\|^{p}\right]^{1 / p}\right) \\
& :=N\left(\left\|u^{1}\right\|_{p, n},\left\|u^{2}\right\|_{p, n}\right)
\end{aligned}
$$

where $u^{1}=\left(u_{k}^{1}\right)_{k=1}^{n}, u^{2}=\left(u_{k}^{2}\right)_{k=1}^{n}$. Note that, by Eq. (1.1), $|\cdot|_{p, n}$ is a norm on $\left(E^{n}\right)^{2}$ making it a Banach space. The diagonal of G^{n} is given by

$$
D^{n}:=\left\{\left(\left(g_{k}\right)_{k=1}^{n},\left(g_{k}\right)_{k=1}^{n}\right):\left(g_{k}\right)_{k=1}^{n} \in G^{n}\right\} .
$$

Definition 1. We say that $g \in G$ is a best N-simultaneous approximation from G of the pair of elements $u^{1}, u^{2} \in E$ if, for every $h \in G$,

$$
N\left(\left\|u^{1}-g\right\|,\left\|u^{2}-g\right\|\right) \leqslant N\left(\left\|u^{1}-h\right\|,\left\|u^{2}-h\right\|\right)
$$

or, in other words, if, for every $h \in G$,

$$
\left|\left(u^{1}-g, u^{2}-g\right)\right|_{1,1} \leqslant\left|\left(u^{1}-h, u^{2}-h\right)\right|_{1,1} .
$$

Note that $g \in G$ is a best N-simultaneous approximation from G of u^{1}, $u^{2} \in E$ if and only if (g, g) is a best approximation from D^{1} of the pair ($\left.u^{1}, u^{2}\right) \in E^{2}$, where the norm on E^{2} is $|\cdot|_{1,1}$. If every pair of elements u^{1}, $u^{2} \in E$ admits a best N-simultaneous approximation from G (equivalently, D^{1} is proximinal in E^{2}), then G is said to be N-simultaneously proximinal in E.

The problem of best simultaneous approximations has been studied by many authors, e.g., $[1,7,13-15]$. Most of these works have dealt with the characterizations of best simultaneous approximations in spaces of continuous functions with values in a Banach space E. Some existence and uniqueness results were also obtained. Results on best simultaneous approximation in general Banach spaces may be found in [9] and [11]. Little or no work has been done in the spaces $L^{p}(I, E)$. It is the aim of this paper to establish some existence results in this area. Among other things, we prove that, if G is a reflexive subspace of the Banach space E and $1 \leqslant p<\infty$, then $L^{p}(I, G)$ is N-simultaneously proximinal in $L^{p}(I, E)$.

Before we continue we note, as pointed out in Definition 1, that problems of best simultaneous approximation can also be viewed as special cases of vector-valued approximation. Some recent work in this area is due to Pinkus [10].

2. BEST SIMULTANEOUS APPROXIMATION IN $L^{P}(I, E)$

Recall that the norm of $u \in E^{n}$, hence also of $u \in G^{n}$ and of $u \in D^{n}$, is $\|u\|_{p, n}$ where p is a fixed real number in $[1, \infty)$.

We start this section with the following observations:
Remark 1. Since all norms on a finite dimensional vector space are equivalent and since $N\left(\left[\sum_{k=1}^{n}(\cdot)^{p}\right]^{1 / p},\left[\sum_{k=1}^{n}(\cdot)^{p}\right]^{1 / p}\right)$ is a norm on $R^{n} \times R^{n}$, we have (where the norm on $\left(E^{n}\right)^{2}$ is $\left.|\cdot|_{p, n}\right)$:
(1) A sequence $\left(\left(u_{k}^{m}\right)_{k=1}^{n},\left(v_{k}^{m}\right)_{k=1}^{n}\right)_{m=1}^{\infty}$ in $\left(E^{n}\right)^{2}$ is bounded if and only if the sets $\left\{u_{k}^{m}: 1 \leqslant k \leqslant n, 1 \leqslant m<\infty\right\}$ and $\left\{v_{k}^{m}: 1 \leqslant k \leqslant n, 1 \leqslant m<\infty\right\}$ are both bounded in E.
(2) A sequence $\left(\left(u_{k}^{m}\right)_{k=1}^{n},\left(v_{k}^{m}\right)_{k=1}^{n}\right)_{m=1}^{\infty}$ in $\left(E^{n}\right)^{2}$ is convergent (weakly convergent) if and only if all the sequences $\left(u_{k}^{m}\right)_{m=1}^{\infty},\left(u_{k}^{m}\right)_{m=1}^{\infty}, 1 \leqslant k \leqslant n$, are convergent (weakly convergent) in E.
(3) If G is reflexive then G^{n} and D^{n} are reflexive.

Note that $\left(g_{k}\right)_{k=1}^{n} \in G^{n}$ is a best N-simultaneous approximation from G^{n} of the pair of elements $\left(u_{k}^{1}\right)_{k=1}^{n},\left(u_{k}^{2}\right)_{k=1}^{n} \in E^{n}$ if and only if, for every $\left(h_{k}\right)_{k=1}^{n} \in G^{n}$,

$$
\left|\left(\left(u_{k}^{1}-g_{k}\right)_{k=1}^{n},\left(u_{k}^{2}-g_{k}\right)_{k=1}^{n}\right)\right|_{p, n} \leqslant\left|\left(\left(u_{k}^{1}-h_{k}\right)_{k=1}^{n},\left(u_{k}^{2}-h_{k}\right)_{k=1}^{n}\right)\right|_{p, n} .
$$

It follows immediately that
Remark 2. Let $\left(g_{k}\right)_{k=1}^{n} \in G^{n}$ be a best N-simultaneous approximation from G^{n} of the pair of elements $\left(u_{k}^{1}\right)_{k=1}^{n},\left(u_{k}^{2}\right)_{k=1}^{n} \in E^{n}$. Then, for each $k \in\{1, \ldots, n\}, g_{k}=0$ whenever $u_{k}^{1}=u_{k}^{2}=0$.

From Remark 1 we obtain that, if G is reflexive, then D^{n} is reflexive and, consequently, proximinal in $\left(E^{n}\right)^{2}$. Hence, we have:

Lemma 1. If G is reflexive then, for every $n \geqslant 1, G^{n}$ is N-simultaneously proximinal in E^{n}.

Now, note that $g \in L^{p}(I, G)$ is a best N-simultaneous approximation from $L^{p}(I, G)$ of $f_{1}, f_{2} \in L^{p}(I, E)$ if and only if, for all $h \in L^{p}(I, G)$,

$$
N\left(\left\|f_{1}-g\right\|_{p},\left\|f_{2}-g\right\|_{p}\right) \leqslant N\left(\left\|f_{1}-h\right\|_{p},\left\|f_{2}-h\right\|_{p}\right) .
$$

The main result of this section is:

Theorem 1. If, for every $n \geqslant 1, G^{n}$ is N-simultaneously proximinal in E^{n}, then every pair of simple functions $f_{1}, f_{2} \in L^{p}(I, E)$ admits a best N-simultaneous approximation g from $L^{p}(I, G)$.

Proof. Let f_{1}, f_{2} be two simple functions in $L^{p}(I, E)$. Then $f_{j}(s):=$ $\sum_{k=1}^{n} u_{k}^{j} \chi_{I_{k}}(s), j=1,2$, where the I_{k} 's are disjoint measurable subsets of I satisfying $\bigcup_{k=1}^{n} I_{k}=I$ and $\chi_{I_{k}}$ is the characteristic function of I_{k}. Since f_{1} and f_{2} represent classes of functions, we may assume that $\mu\left(I_{k}\right)>0,1 \leqslant k \leqslant n$. By assumption, there exists an N-simultaneous best approximation $\left(w_{k}\right)_{k=1}^{n}$ from G^{n} of the pair of elements $\left(\mu^{1 / p}\left(I_{k}\right) u_{k}^{1}\right)_{k=1}^{n},\left(\mu^{1 / p}\left(I_{k}\right) u_{k}^{2}\right)_{k=1}^{n} \in E^{n}$. This implies, if $g_{k}:=\frac{1}{\mu^{1 / p}\left(I_{k}\right)} w_{k}$, that $g:=\sum_{k=1}^{n} g_{k} \chi_{I_{k}} \in L^{p}(I, G)$ and, since $w_{k}=$ $\mu^{1 / p}\left(I_{k}\right) g_{k}$, that

$$
\begin{align*}
& \left|\left(\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{1}-g_{k}\right)\right)_{k=1}^{n},\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{2}-g_{k}\right)\right)_{k=1}^{n}\right)\right|_{p, n} \tag{2.1}\\
& \quad \leqslant\left|\left(\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{1}-h_{k}\right)\right)_{k=1}^{n},\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{2}-h_{k}\right)\right)_{k=1}^{n}\right)\right|_{p, n}
\end{align*}
$$

for all $h:=\sum_{k=1}^{n} h_{k} \chi_{I_{k}} \in L^{p}(I, G)$. In other words, we have

$$
\begin{equation*}
N\left(\left\|f_{1}-g\right\|_{p},\left\|f_{2}-g\right\|_{p}\right) \leqslant N\left(\left\|f_{1}-h\right\|_{p},\left\|f_{2}-h\right\|_{p}\right), \tag{2.2}
\end{equation*}
$$

for all $h:=\sum_{k=1}^{n} h_{k} \chi_{I_{k}} \in L^{p}(I, G)$. We need to show that Eq. (2.2) holds for all simple functions (hence, by density, for all functions) $h \in L^{p}(I, G)$. So let h be any simple function in $L^{p}(I, G)$. Then $h:=\sum_{i=1}^{m} h_{i} \chi_{J_{i}}(s)$, where the J_{i} 's are disjoint, $\bigcup_{i=1}^{m} J_{i}=I$. Then

$$
f_{j}=\sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} u_{k i}^{j} \chi_{I_{k} \cap J_{i}}, \quad j=1,2, \quad \text { and } \quad h=\sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} h_{k i} \chi_{I_{k} \cap J_{i}},
$$

where, for each j and each $k, j=1,2$ and $1 \leqslant k \leqslant n$,

$$
\begin{equation*}
u_{k i}^{j}=u_{k}^{j}, \quad 1 \leqslant i \leqslant m, \tag{2.3}
\end{equation*}
$$

and, for each $i, 1 \leqslant i \leqslant m$,

$$
h_{k i}=h_{i}, \quad 1 \leqslant k \leqslant n .
$$

Again, we obtain from the assumption that there exists a best N-simultaneous approximation $\left(w_{k i}^{*}\right)_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m}$ from $G^{n m}$ of the pair of elements $\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\right.$ $\left.u_{k i}^{1}\right)_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m},\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right) u_{k i}^{2}\right)_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} \in E^{n m}$. Note that, by Remark $2, w_{k i}^{*}=0$ whenever $\mu^{1 / p}\left(I_{k} \cap J_{i}\right) u_{k i}^{1}=\mu^{1 / p}\left(I_{k} \cap J_{i}\right) u_{k i}^{2}=0$. Let $w_{k i}^{*}:=\mu^{1 / p}\left(I_{k} \cap J_{i}\right) g_{k i}^{*}$, $g_{k i}^{*}:=0$ if $w_{k i}^{*}=0$. Then,

$$
g^{*}:=\sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} g_{k i}^{*} \chi_{I_{k} \cap J_{i}} \in L^{p}(I, G)
$$

and

$$
\begin{align*}
& \left|\left(\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{1}-g_{k i}^{*}\right)\right)_{k, i=1}^{n, m},\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{2}-g_{k i}^{*}\right)\right)_{k, i=1}^{n, m}\right)\right|_{p, n m} \tag{2.4}\\
& \quad \leqslant\left|\left(\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{1}-h_{k i}\right)\right)_{k, i=1}^{n, m},\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{2}-h_{k i}\right)\right)_{k, i=1}^{n, m}\right)\right|_{p, n m} .
\end{align*}
$$

Note that, if $\lambda_{k i}:=\mu\left(I_{k} \cap J_{i}\right) / \mu\left(I_{k}\right)$, then $\sum_{i=1}^{m} \lambda_{k i}=1$ and

$$
\sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} \mu\left(I_{k} \cap J_{i}\right)\left\|u_{k i}^{j}-g_{k i}^{*}\right\|^{p}=\sum_{k=1}^{n} \mu\left(I_{k}\right) \sum_{i=1}^{m} \lambda_{k i}\left\|u_{k i}^{j}-g_{k i}^{*}\right\|^{p}, \quad j=1,2 .
$$

Therefore, since $\|v\|^{p}$ is a convex function of $v \in E$ for $p \geqslant 1$,

$$
\sum_{i=1}^{m} \lambda_{k i}\left\|u_{k i}^{j}-g_{k i}^{*}\right\|^{p} \geqslant\left\|\sum_{i=1}^{m} \lambda_{k i} u_{k i}^{j}-\sum_{i=1}^{m} \lambda_{k i} g_{k i}^{*}\right\|^{p}=\left\|u_{k}^{j}-\beta_{k}\right\|^{p}, \quad j=1,2,
$$

where $\beta_{k}:=\sum_{i=1}^{m} \lambda_{k i} g_{k i}^{*}$ and where the equality follows from Eq. (2.3) and the fact that $\sum_{i=1}^{m} \lambda_{k i}=1$. Therefore we get

$$
\begin{equation*}
\sum_{1 \leqslant k \leqslant n}^{1 \leqslant i \leqslant m} \mu\left(I_{k} \cap J_{i}\right)\left\|u_{k i}^{j}-g_{k i}^{*}\right\|^{p} \geqslant \sum_{k=1}^{n} \mu\left(I_{k}\right)\left\|u_{k}^{j}-\beta_{k}\right\|^{p}, \quad j=1,2 . \tag{2.5}
\end{equation*}
$$

Hence, using Eqs. (2.1) then (1.1) and (2.5) then (2.4), we get

$$
\begin{aligned}
& \left|\left(\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{1}-g_{k}\right)\right)_{k=1}^{n},\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{2}-g_{k}\right)\right)_{k=1}^{n}\right)\right|_{p, n} \\
& \quad \leqslant\left|\left(\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{1}-\beta_{k}\right)\right)_{k=1}^{n},\left(\mu^{1 / p}\left(I_{k}\right)\left(u_{k}^{2}-\beta_{k}\right)\right)_{k=1}^{n}\right)\right|_{p, n} \\
& \quad \leqslant\left|\left(\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{1}-g_{k i}^{*}\right)\right)_{k, i=1}^{n, m},\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{2}-g_{k i}^{*}\right)\right)_{k, i=1}^{n, m}\right)\right|_{p, n m} \\
& \left.\quad \leqslant \mid\left(\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{1}-h_{k i}\right)\right)_{k, i=1}^{n, m},\left(\mu^{1 / p}\left(I_{k} \cap J_{i}\right)\left(u_{k i}^{2}-h_{k i}\right)\right)\right)_{k, i=1}^{n, m}\right)\left.\right|_{p, n m} .
\end{aligned}
$$

In other words,

$$
N\left(\left\|f_{1}-g\right\|_{p},\left\|f_{2}-g\right\|_{p}\right) \leqslant N\left(\left\|f_{1}-h\right\|_{p},\left\|f_{2}-h\right\|_{p}\right)
$$

for all simple functions $h \in L^{p}(I, G)$ and, consequently, for all functions $h \in L^{p}(I, G)$, since the set of simple functions is dense in $L^{p}(I, G)$. The proof is complete.

Corollary 1. If G is reflexive, then every pair of simple functions $f_{1}, f_{2} \in$ $L^{p}(I, E)$ admits a best N-simultaneous approximation g from $L^{p}(I, G)$.

From the proof of the theorem we obtain:
Remark 3. If, for every $n \geqslant 1, G^{n}$ is N-simultaneously proximinal in E^{n}, then every pair of simple functions in $L^{p}(I, E)$ admits a simple function in $L^{p}(I, G)$ as an N-simultaneous approximation.

In the special case where N is the p-norm on R^{2}, we obtain a stronger result than that of Theorem 1:

Theorem 2. If $N\left(x_{1}, x_{2}\right):=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}\right)^{1 / p}$ and if $L^{p}\left(I, D^{1}\right)$ is proximinal in $L^{p}\left(I, E^{2}\right)$, then $L^{p}(I, G)$ is N-simultaneously proximinal in $L^{p}(I, E)$.

Proof. First we note that

$$
\begin{aligned}
N\left(\left\|f_{1}\right\|_{p},\left\|f_{2}\right\|_{p}\right) & =\left(\int_{I}\left\|f_{1}(s)\right\|^{p} d \mu+\int_{I}\left\|f_{2}(s)\right\|^{p} d \mu\right)^{1 / p} \\
& =\left(\int_{I}\left(\left\|f_{1}(s)\right\|^{p}+\left\|f_{2}(s)\right\|^{p}\right) d \mu\right)^{1 / p} \\
& =\left(\int_{I}\left[N\left(\left\|f_{1}(s)\right\|,\left\|f_{2}(s)\right\|\right)\right]^{p} d \mu\right)^{1 / p}
\end{aligned}
$$

This implies that $\left[L^{p}(I, E)\right]^{2}$ is isometric to $L^{p}\left(I, E^{2}\right)$ and that $D_{L^{p}(I, G)}^{1}:=$ $\left\{(g, g): g \in L^{p}(I, G)\right\}$ is isometric to $L^{p}\left(I, D^{1}\right)$. Hence we obtain, from the assumption, that $D_{L^{p}(I, G)}^{1}$ is proximinal in $\left[L^{p}(I, E)\right]^{2}$. The theorem now follows from the fact that $L^{p}(I, G)$ is N-simultaneously proximinal in $L^{p}(I, E)$ if and only if $D_{L^{p}(I, G)}^{1}$ is proximinal in $\left[L^{p}(I, E)\right]^{2}$. End of the proof.

On the question of proximinality of $L^{p}(I, H)$ in $L^{p}(I, X)$, where X is a Banach space and H is a closed subspace satisfying some conditions (in our case $X=E^{2}$ and $H=D^{1}$), many results have been established by various authors, e.g., $[2,4-6,8,12]$ to mention a few. For some of the strongest
results on this question, we refer the reader to [12] and [8]. Therefore, one can obtain several corollaries from Theorem 2. In particular, if G is reflexive then, by Remark 1, D^{1} is reflexive and, consequently, $L^{p}\left(I, D^{1}\right)$ is proximinal in $L^{p}\left(I, E^{2}\right)$, [12].

Note that if G is reflexive and $1<p<\infty$, then it follows, by Remark 1 and by [3, IV.1. Corollary 2], that $L^{p}(I, G)$ and $L^{p}\left(I, D^{1}\right)$ are reflexive. Therefore, for $p>1$, we obtain directly, by Lemma 1 , the following more general result than those of Corollary 1 and Theorem 2:

Theorem 3. If G is reflexive and $1<p<\infty$, then $L^{p}(I, G)$ is N-simultaneously proximinal in $L^{p}(I, E)$.

The case where $p=1$ and N is arbitrary is more difficult and will be studied in Section 3.

3. BEST SIMULTANEOUS APPROXIMATION IN $L^{1}(I, E)$

First, we establish some preliminary results needed for the proof of our main theorem:

Lemma 2. If $\left|x_{j}\right|<\left|y_{j}\right|$ in $R, j=1,2$, then $N\left(x_{1}, x_{2}\right)<N\left(y_{1}, y_{2}\right)$.
Proof. From the assumption we get that there exist $\alpha_{1}, \alpha_{2} \in[0,1)$ such that $\left|x_{j}\right|=\alpha_{j}\left|y_{j}\right|, j=1,2$. Let $\lambda:=\max \left\{\alpha_{1}, \alpha_{2}\right\}$. Then $\lambda<1$ and $\left|x_{j}\right| \leqslant \lambda\left|y_{j}\right|$, $j=1,2$.

Therefore by Eq. (1.1) we get

$$
N\left(x_{1}, x_{2}\right) \leqslant N\left(\lambda y_{1}, \lambda y_{2}\right)=\lambda N\left(y_{1}, y_{2}\right) .
$$

But $\lambda<1$ and from the assumption $N\left(y_{1}, y_{2}\right)>0$. Therefore $N\left(x_{1}, x_{2}\right)<$ $N\left(y_{1}, y_{2}\right)$.

Lemma 3. If $g \in L^{p}(I, G)$ is a best N-simultaneous approximation from $L^{p}(I, G)$ of the pair of elements $f_{1}, f_{2} \in L^{p}(I, E)$ then, for every measurable subset A of I and every $h \in L^{p}(I, G)$,

$$
\int_{A}\left\|f_{j_{o}}(s)-g(s)\right\|^{p} d \mu \leqslant \int_{A}\left\|f_{j_{o}}(s)-h(s)\right\|^{p} d \mu,
$$

for some $j_{o} \in\{1,2\}$.

Proof. If $\mu(A)=0$ then there is nothing to prove. Suppose that, for some A satisfying $\mu(A)>0$ and for some $h_{o} \in L^{p}(I, G)$, the inequality does not hold for $j=1$ and for $j=2$. Now, define $g_{o} \in L^{p}(I, G)$ by

$$
g_{o}(s):=\left\{\begin{array}{lll}
g(s) & \text { if } & s \in I-A \\
h_{o}(s) & \text { if } & s \in A .
\end{array}\right.
$$

Then we have, for $j=1,2$,

$$
\begin{aligned}
& {\left[\int_{I}\left\|f_{j}(s)-g_{o}(s)\right\|^{p} d \mu\right]^{1 / p}} \\
& \quad=\left[\int_{A}\left\|f_{j}(s)-h_{o}(s)\right\|^{p} d \mu+\int_{I-A}\left\|f_{j}(s)-g(s)\right\|^{p} d \mu\right]^{1 / p} \\
& \quad<\left[\int_{A}\left\|f_{j}(s)-g(s)\right\|^{p} d \mu+\int_{I-A}\left\|f_{j}(s)-g(s)\right\|^{p} d \mu\right]^{1 / p} \\
& \quad=\left[\int_{I}\left\|f_{j}(s)-g(s)\right\|^{p} d \mu\right]^{1 / p} .
\end{aligned}
$$

This together with Lemma 2 imply that

$$
N\left(\left\|f_{1}-g_{o}\right\|_{p},\left\|f_{2}-g_{o}\right\|_{p}\right)<N\left(\left\|f_{1}-g\right\|_{p},\left\|f_{2}-g\right\|_{p}\right)
$$

which contradicts the fact that g is a best N-simultaneous approximation from $L^{p}(I, G)$ of the pair of elements f_{1}, f_{2}.

As a corollary we get:

Corollary 2. If g is a best N-simultaneous approximation from $L^{p}(I, G)$ of the pair of elements $f_{1}, f_{2} \in L^{p}(I, E)$ then, for every measurable subset A of I,

$$
\int_{A}\|g(s)\|^{p} d \mu \leqslant 2 \max \left\{\int_{A}\left\|f_{1}(s)\right\|^{p} d \mu, \int_{A}\left\|f_{2}(s)\right\|^{p} d \mu\right\}
$$

Proof. Since, for $j=1,2$,

$$
\left[\int_{A}\|g(s)\|^{p} d \mu\right]^{1 / p} \leqslant\left[\int_{A}\left\|f_{j}(s)-g(s)\right\|^{p} d \mu\right]^{1 / p}+\left[\int_{A}\left\|f_{j}(s)\right\|^{p} d \mu\right]^{1 / p}
$$

we obtain, by using Lemma 3 with $h:=0$, that for some $j_{o} \in\{1,2\}$

$$
\begin{aligned}
{\left[\int_{A}\|g(s)\|^{p} d \mu\right]^{1 / p} } & \leqslant 2\left[\int_{A}\left\|f_{j_{0}}(s)\right\|^{p} d \mu\right]^{1 / p} \\
& \leqslant 2 \max \left\{\left[\int_{A}\left\|f_{1}(s)\right\|^{p} d \mu\right]^{1 / p},\left[\int_{A}\left\|f_{2}(s)\right\|^{p} d \mu\right]^{1 / p}\right\}
\end{aligned}
$$

which completes the proof.
We note that, as a corollary of Lemma 3, we get that, if $g \in G^{n}$ is a best N-simultaneous approximation from G^{n} of the pair of elements $u^{1}, u^{2} \in E^{n}$ then, for each $h \in G^{n}$ and each $k, 1 \leqslant k \leqslant n$,

$$
\text { either } \quad\left\|u_{k}^{1}-g_{k}\right\| \leqslant\left\|u_{k}^{1}-h_{k}\right\| \quad \text { or } \quad\left\|u_{k}^{2}-g_{k}\right\| \leqslant\left\|u_{k}^{2}-h_{k}\right\| .
$$

Hence, for every $J \subset\{1,2, \ldots, n\}$,

$$
\sum_{k \in J}\left\|g_{k}\right\|^{p} \leqslant 2 \max \left\{\sum_{k \in J}\left\|u_{k}^{1}\right\|^{p}, \sum_{k \in J}\left\|u_{k}^{2}\right\|^{p}\right\} .
$$

We are now ready to establish the analogue of Theorem 3 for $L^{1}(I, E)$:

Theorem 4. If G is reflexive then $L^{1}(I, G)$ is N-simultaneously proximinal in $L^{1}(I, E)$.

Proof. Let $f_{1}, f_{2} \in L^{1}(I, E)$ and let $\left\{f_{j n}\right\}_{n=1}^{\infty}, j=1,2$, be two sequences of simple functions in $L^{1}(I, E)$ satisfying

$$
\lim _{n \rightarrow \infty}\left\|f_{j}-f_{j n}\right\|_{1}=0, \quad j=1,2 .
$$

By Corollary 1 we obtain, for each $n \geqslant 1$, that the pair of simple functions $f_{1 n}, f_{2 n}$ admits a best N-simultaneous approximation g_{n} from $L^{p}(I, G)$. Hence we have, for each $n \geqslant 1$,

$$
\begin{equation*}
N\left(\left\|f_{1 n}-g_{n}\right\|_{1},\left\|f_{2 n}-g_{n}\right\|_{1}\right) \leqslant N\left(\left\|f_{1 n}-h\right\|_{1},\left\|f_{2 n}-h\right\|_{1}\right), \tag{3.1}
\end{equation*}
$$

for every $h \in L^{1}(I, G)$. By Corollary 3, we obtain that

$$
\int_{A}\left\|g_{n}(s)\right\| d \mu \leqslant 2 \max \left\{\int_{A}\left\|f_{1 n}(s)\right\| d \mu, \int_{A}\left\|f_{2 n}(s)\right\| d \mu\right\}
$$

for every $n \geqslant 1$. It follows, since both $\left\{f_{1 n}\right\}_{n=1}^{\infty}$ and $\left\{f_{2 n}\right\}_{n=1}^{\infty}$ are uniformly integrable, i.e.,

$$
\sup \left\{\sup _{n}\left\{\int_{A}\left\|f_{j n}(s)\right\| d \mu\right\}: A \subset I, \mu(A) \leqslant \varepsilon\right\} \rightarrow 0 \quad \text { as } \quad \varepsilon \rightarrow 0
$$

and since $f_{j n} \rightarrow f_{j}$ in $L^{1}(I, E), j=1,2$, that the sequence $\left\{g_{n}\right\}_{n=1}^{\infty}$ in $L^{1}(I, G)$ is bounded and uniformly integrable. Hence, since G is reflexive, we obtain, by Dunford's theorem [3], that $\left\{g_{n}\right\}_{n=1}^{\infty}$ is relatively weakly compact in $L^{1}(I, E)$. Therefore, there exists a subsequence, say $\left\{g_{n}\right\}_{n=1}^{\infty}$, which converges weakly to some element $g \in L^{1}(I, E)$. It follows, since $L^{1}(I, G)$ is closed and convex hence weakly closed, that $g \in L^{1}(I, G)$. It follows from Eq. (1.1) that $N\left(\|\cdot\|_{1},\|\cdot\|_{1}\right)$ is convex and continuous, and hence weakly lower semicontinuous, on $L^{1}(I, E)$. This together with Eq. (3.1) imply that, for every $h \in L^{1}(I, G)$,

$$
\begin{aligned}
N\left(\left\|f_{1}-g\right\|_{1},\left\|f_{2}-g\right\|_{1}\right) & \leqslant \liminf _{n} N\left(\left\|f_{1 n}-g_{n}\right\|_{1},\left\|f_{2 n}-g_{n}\right\|_{1}\right) \\
& \leqslant \liminf _{n} N\left(\left\|f_{1 n}-h\right\|_{1},\left\|f_{2 n}-h\right\|_{1}\right) \\
& =N\left(\left\|f_{1}-h\right\|_{1},\left\|f_{2}-h\right\|_{1}\right) .
\end{aligned}
$$

Therefore g is a best N-simultaneous approximation from $L^{p}(I, G)$ of the pair $f_{1}, f_{2} \in L^{1}(I, E)$.

Finally, we note the following:
Remark 4. It follows immediately that all the results and proofs in this paper are valid in the case where N is a norm on $R^{M}, M \geqslant 2$, satisfying

$$
N(x) \leqslant N(y), \quad \text { if } \quad\left|x_{i}\right| \leqslant\left|y_{i}\right|, \quad 1 \leqslant i \leqslant M .
$$

In this case, $g \in G$ is said to be a best N-simultaneous approximation from G of the elements $u^{1}, u^{2}, \ldots, u^{M} \in E$ if, for every $h \in G$,

$$
N\left(\left\|u^{1}-g\right\|,\left\|u^{2}-g\right\|, \ldots,\left\|u^{M}-g\right\|\right) \leqslant N\left(\left\|u^{1}-h\right\|,\left\|u^{2}-h\right\|, \ldots,\left\|u^{M}-h\right\|\right) .
$$

REFERENCES

1. L. Chong and G. A. Watson, On best simultaneous approximation, J. Approx. Theory 91 (1997), 332-348.
2. W. Deeb and R. Khalil, Best approximation in $L(X, Y)$, Math. Proc. Cambridge Philos. Soc. 104 (1988), 527-531.
3. J. Diestel and J. R. Uhl, "Vector Measures," Math. Surveys Monographs, Vol. 15, Amer. Math. Soc., Providence, RI, 1977.
4. R. Khalil and W. Deeb, Best approximation in $L^{p}(I, X)$, ii, J. Approx. Theory 59 (1989), 296-299.
5. R. Khalil and F. Saidi, Best approximation in $L^{1}(I, X)$, Proc. Amer. Math. Soc. 123 (1995), 183-190.
6. W. Light, Proximinality in $L_{p}(S, Y)$, Rocky Mountain J. Math. (1989).
7. J. Mach, Best simultaneous approximation of bounded functions with values in certain Banach spaces, Math. Ann. 240 (1979), 157-164.
8. J. Mendoza, Proximinality in $L^{p}(\mu, X)$, J. Approx. Theory 93 (1998), 313-330.
9. P. D. Milman, On best simultaneous approximation in normed linear spaces, J. Approx. Theory 20 (1977), 223-238.
10. A. Pinkus, Uniqueness in Vector-valued approximation, J. Approx. Theory 73 (1993), 17-92.
11. B. N. Sahney and S. P. Singh, On best simultaneous approximation in Banach spaces, J. Approx. Theory 35 (1982), 222-224.
12. F. Saidi, On the smoothness of the metric projection and its application to proximinality in $L^{p}(S, X)$, J. Approx. Theory 83 (1995), 205-319.
13. S. Tanimoto, On best simultaneous approximation, Math. Japonica 48 (1998), 275-279.
14. S. Tanimoto, A characterization of best simultaneous approximations, J. Approx. Theory 59 (1989), 359-361.
15. G. A. Watson, A characterization of best simultaneous approximations, J. Approx. Theory 75 (1993), 175-182.

[^0]: ${ }^{1}$ Professor Deeb Hussein passed away on July 28, 2001.

